[image: image1.png]COMP 215 Algorithms (and DNA) LeBlanc

Experiments in Sorting Words (or motifs)
(0) Give your software a name. C'mon ... humor me !
(1) Run an experiment to compare the time (sec) it takes you to sort all the unique words in the chapter "The Chase - The Third Day" of Herman Melville's Moby Dick using two different sorts:

(i) Insert Sort (you write this)

(ii) qSort() from the standard library (stdlib.h)

Use various numbers of words (e.g., you may want to concatenate a number of chapters of Moby Dick together) for each sort to increase the range of unique words. Fill in your experimental results in tables such as shown below. You will submit (i) a sample input showing a small test case with the words stored in your array of structs both before and after each sort; (ii) your tables of results; as well as (iii) graphs of the results in the tables.

Table 1. Time(sec) to Read Words and Sort Alphabetically

N words
100
1000
10000
...

Insert Sort

Quick Sort

Table 2. Time(sec) to (only) Sort Alphabetically
N words
100
1000
10000
...

Insert Sort

Quick Sort

Table 3. Time(sec) to (only) Sort by Frequency of each unique word
N words
100
1000
10000
...

Insert Sort

Quick Sort

(2) Run an experiment to compare the time (sec) it takes you to sort all the unique motifs of length L from Chromosome III of C.elegans using two different sorts:

(i) Insert Sort (you write this)

qSort()
from the standard library (stdlib.h)

Try various motif lengths: 4 ≤ L ≤ 6. Fill in your experimental results in a table such as shown below. You will submit (i) a sample input showing a small test case with the motifs stored in your array of structs both before and after each sort; (ii) your tables of results; as well as (iii) graphs of the results in the tables.

Table 4. Time(sec) to Read Motifs and Sort Alphabetically
Length

N motifs
L=4

256
L=5

1024
L=6

4096

Insert Sort

Quick Sort

Table 5. Time(sec) to (only) Sort Alphabetically
Length

N motifs
L=4

256
L=5

1024
L=6

4096

Insert Sort

Quick Sort

Table 6. Time(sec) to (only) Sort by Frequency of each unique motif
Length

N motifs
L=4

256
L=5

1024
L=6

4096

Insert Sort

Quick Sort

SOFTWARE SPECIFICATION
Application Programming Interface (API) (minimum):

// attempt to open input file, return the FILE pointer

FILE* OpenFile(char* filename);

// IN: string with the name of the input file

// RETURN: if successful open, a FILE pointer to

// file of words (or nucleotides) to search

// e.g., MobyDick.txt or worm_III.fna

// close FILE handle

int CloseFile(FILE* fp);

void initDataStructure
(ElementType A[]);

void getMotifData
(ElementType A[], long* n);

void getMobyDickData
(ElementType A[], long* n);

void printData

(ElementType A[], long n);

void doQuickSort

(ElementType A[], long n);

void doInsertSort

(ElementType A[], long n);

BOOL compareWords(const ElementType* one, const ElementType* two);

 /* qsort will use this function to compare WORDS in the structs;

 PRE: one and two are pointers to valid data elements to compare

 POST: RETURN zero(0) if *one==*two, else RETURN negative if

*one < *two; otherwise RETURN positive when *one > *two */

BOOL compareCounts(const ElementType* one, const ElementType* two);

 /* qsort will use this function to compare counts of words in structs */

INPUT: (1) a filename (from stdin) (2) a file filled with words (no punctuation) or motifs

For example, the first three lines of the last chapter of Moby Dick, The Chase - The Third Day:

|The Chase Third Day The morning of the third day dawned fair and fresh and

|once more the solitary nightman at the fore masthead was relieved by crowds of the

|daylight lookouts who dotted

|…….

|

See:

http://www.bibliomania.com
Note: you can remove all the punctuation from a file, that is, you can use perl to perform the regular expression (-e): {substitute (s) nothing (//) for everything (g) on each line that is [not a word (^\w) or a space] } from an input file (-pi) in Linux at the command line prompt (%) with:

% perl -pi -e 's/[^\w]//g' mobyDick.txt

Careful! This is a destructive change to the file. Make a copy first!

or (if searching motifs)
For example, the first line of E.coli:

|>gb|U00096|ECOLI Escherichia coli K-12 MG1655 complete genome

|AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

|…….

|

OUTPUT
Your output will be in various flavors depending on your working mode. I suggest you wisely use #ifdef's to control how your output is displayed (e.g., VERBOSE or EXCEL). For your simple examples, I want to see a before and after look at all the data in your data structure. For your experimental results, you really only need to output the labels and values that you'll need in Excel, right?

DATA STRUCTURE
Use an array of structs to hold unique words and their respective frequency counts.

typedef struct

{

char word[MAXLEN+1];

long count;

} ElementType;

int main()

{

/* ----- my DATA STRUCTURE ----- */

 ElementType A[MAX];

 long n;

/* ------------------------------*/

(1) TO SUBMIT (everything stapled together in a neat package):

(2) Hardcopy of your documented README and source code.

(3) Simple INPUT and OUTPUT example of working sorts for both sorts (clearly labeled!)

(4) Tables 1-6 and associated graphs (Figures 1-6) for each. Each table and figure must have summaries.

(5) A typed report explaining the results.

(6) Your recommendations on which sort to use and when. Please explain why. (Note: your boss is not a programmer. She only wants to know what to do and she wants to feel comfortable enough with the experiments and results so that she can convince the board at the next briefing).

Program #4 -- Spring 2002
1
Algorithms and DNA

