[image: image1.png]

BIO 211 Genetics

 Dyer

COMP 215 Algorithms (and DNA) LeBlanc

isPal

Finding IRs (Inverted Repeats) of various lengths

We'll ask you for a number of things, but first of all, create and use your own name for your software, e.g., I call mine "isPal" to mean "is it a Palindrome (IR)?"

The Goal: Implement a suite of C functions with an easy to use API (Application Programming Interface) to find all IRs of a given length L in an input file of nucleotides (FASTA format).

For example, your software might allow a user to input a length, L=20 and your software would return all the IRs of length 20. We hope you will impress us with additional functionality beyond this point, e.g., you might report all the IRs of length 20 that allow up to 10% error, that is in this case, 2 mismatches.

What is an Inverted Repeat (IR) and why is it important?

In addition to being innately beautiful, inverted repeats (IRs) have some important regulatory functions. IRs are bilaterally symmetrical (especially when you consider the 3 dimensionality of the DNA helix). Therefore IRs interact well with bilaterally symmetrical binding proteins, such as some of those that bind and regulate transcription. Bilateral symmetry is itself a type of redundancy that can tolerate slight errors more easily than if the information were in single copies.

IRs provide opportunities for internal base pairing, forming bumps, blebs, kinks, and loops, greatly complicating the usual picture of the double helix. The various bumps etc may be used in DNA rearrangements some of which are mechanisms for regulating transcription and transcription processing.

When very long loops are bounded by IRs, that may indicate a "jumping gene" (transposon) or virus. Some of these (surprisingly) may contribute to the evolution of regulatory mechanisms.

 Software Specification:

Goal: Search a file of nucleotides in FASTA (.fna) format and report all inverted repeats of length L.

API (minimum):

FILE* OpenDNAFile(char* filename);

// PRE: string with the name of the input file

// POST: if successful open, return a FILE pointer to

// .fna file of nucleotides to search, e.g., worm_III.fna;

// otherwise return NULL to indicate failure

// reset the file pointer to the beginning
FILE* ResetDNAFile(FILE* fp);

// method to do the searching

void FindAllPals(FILE* fp,
 // file pointer to already opened file

[other arguments you think you need]

);

int isPal(char* leftEnd, char* rightEnd);

// PRE: leftEnd and rightEnd point to chars on ends of potential IR

// POST: true if the motif is a valid IR; false otherwise

// Note: this is a RECURSIVE function

// close FILE handle(s)

int CloseDNAFile(FILE* fp);

INPUT: A file in FASTA format: initial header in line 1 followed by lines of 70 characters per line then newline until EOF (End Of File), e.g., worm_III.fna (Chromosome III of C.elegans or a snippet of the E.coli file (see below). The user should also enter the Length of the IRs to search for as well as the percentage of mismatches allowed within the IR. For example, to search worm_III.fna for IRs of L=20 with 10% error:

worm_III.fna

20

0.10

For example, the first three lines of E.coli:

|>gb|U00096|ECOLI Escherichia coli K-12 MG1655 complete genome

|AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

|TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA

|TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACC
|…….

|

Note: Think carefully about how you will read in the "next" motif. Of course you want to simulate some sort of moving window, like shown on the next page, but you will have to deal with corners and possible areas where a nucleotide or sequence of nucleotides is unknown (represented by an N).

|T T C T G A A C T G G T G N N N N T T A T T G A C T T \n

OUTPUT (minimum): A (.csv) comma-separated-value output file where the definition of the items between commas (,) is:

initial bp location of the Inverted Repeat (IR), the IR found, % mismatches allowed

worm_III_IR_20_0.csv

|
238 , AGTCT , … 0

|
589 , ATCAT , … 0

|
:

|
:

Note: With this type of output, you can open this file in Excel and then sort by the second column (IR) and quickly determine how many of each IR you found, etc.

Note: The output filename should be "mangled" together from:

the input file name_IR_length_error.csv

Note: See the function itoa() to convert an integer into an ascii string which you can use

with strcat().

Algorithm:
There are fast ways for checking if a certain motif is an Inverted Repeat (IR), e.g., dynamic programming algorithms such as “Longest Common Subsequence”. However for starters, implement your isPal() function as a recursive function.

int isPal(char* leftEnd, char* rightEnd);

// PRE: leftEnd and rightEnd point to chars on ends of potential IR

// POST: true if the motif is a valid IR; false otherwise

// Note: this is a RECURSIVE function

Of course, if you write a version that handles “error” (that is, you don’t give up just because a pair of nucleotides fail to match during the IR-checking), you will need at least one other argument. This argument will indicate the number of mismatches so far. Your recursive function will also turn into double, triple, quadruple recursion, right? Huh? Well for example, suppose you have this small 5-mer: ACGCT

Clearly, the end’s “match”: A with T

But moving in one from each end, C does not “match” with C so you could:

Leave left C as is but move the right-end in to the G in the middle

and count this as one mismatch

Leave the right C as is but move the left-end in to the G in the middle

and count this as one mismatch

etc.

Once you have a recursive isPal() algorithm designed, answer the following questions:

(1) What might you “count” as an important operation when measuring “how long”?

(2) What is the recurrence relation that describes your isPal()?

(3) What is a closed form solution of your recurrence relation?

(4) Can you prove this closed form for all N?

(5) If (4) is yes, what is the Big Oh of your isPal() algorithm?

 A C T G T			

yup, ends “match”, so make a recursive call where the call moves the ends in toward the middle; what is the base case(s)?

 Careful

 a valid 5-mer

Ah, the newline

(1) Lab 3 of 3 -- Spring 2002
4
genomics.wheatoncollege.edu

