The Top-10 Words (in English and DNA)
Assignment 2 (5 marks)
Due Monday, August 23 by 11:59pm

Aim – The Top-10 Words (in English and DNA)
This assignment requires you to write a utility in C/C++ to keep track of the “top 10 words” in a file. The “top” ranking is defined by the frequency of occurrence, for example, in an English text, the three-letter word “the” often appears the most often and thus “the” would appear at the top of the list of most-frequently-occurring words.

The assignment will test a student’s knowledge of design, data structures (linked lists and hash tables), text processing, and using C’s standard input and dynamic memory allocation routines.

Introduction

Two new fields that rely heavily on text processing analysis are (i) authorship attribution studies and (ii) searching biological DNA. Authorship attribution studies try to determine the author of an unknown work, for example, the debate as to whether Shakespeare or Christopher Marlowe (or someone else) wrote a certain play. In authorship attribution studies, word frequency lists are often part of an initial analysis: what are the different words that are used and how frequently do those words appear in a certain work?

As you are aware given the fanfare of the 50th anniversary of Watson and Crick’s discovery of the structure of DNA as well as the (near) completion of the sequencing of the human genome, searching through the “text” of DNA is a hot new research field. Bioinformatics (the collection, storage, management, and analysis of the huge amounts of biologically-relevant data) and genomics (the analysis of DNA sequence) are two new fields that are heavily dependent on “text” analysis. Since DNA is made up of (only) a four-letter alphabet (‘A’, ‘G’, ‘C’, and ‘T’) representing the four chemical nucleotides, the human and other genomes fill files and files with nothing but ACGT. Determining the frequency of each eight-letter word (called a “motif” in DNA Land) within a genome is a common question in genomics: what are the different motifs that appear in a section of a genome and how frequently do those motifs appear?
INPUT (stdin – use only <stdio.h> macros, types, and functions; do not use <iostream>)
The input for your program will be in the form of a text file redirected from standard input. The input file can be of one or two types: (1) an English story (e.g., MobyDick.txt) or (2) a file of DNA (Ecoli.fna). The two files can be differentiated in the following manner:

· DNA files always begin with a header line, beginning with the character >, e.g.
 >gi|16127994|ref|NC_0009| Escherichia coli K12, complete genome

(the details of this header line are not important)

· English text files do not have a header line (the story just begins)
Sample input files:

(1) A sample file of DNA: Ecoli.fna

>gi|16127994|ref|NC_000913.1| Escherichia coli K12, complete genome

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA
(and so on … for many Mbytes, depending on the size of the genome!)

(2) A sample file English text: MobyDick.txt

MOBY DICK OR THE WHALE

by Herman Melville

CHAPTER 1 Loomings
Call me Ishmael. Some years ago--never mind how long precisely--

having little or no money in my purse, and nothing particular

In the assignments/ass2/ directory, we have included small sample test files. Obviously you do not want to test your program on Melville’s entire story of Moby Dick nor do you want to test using the entire genome of E.coli. Sample test files include:

-rw-r--r-- 1 mleblanc csstf 63 Aug 9 20:32 TestDNA1.fna
-rw-r--r-- 1 mleblanc csstf 77 Aug 9 20:30 TestDNA2.fna
-rw-r--r-- 1 mleblanc csstf 10647 Aug 9 20:42 Ecoli_10K.fna

-rw-r--r-- 1 mleblanc csstf 43 Aug 9 20:47 TestEnglish.txt

For final testing purposes, we have included the entire E.coli genome and the entire story of Moby Dick:

-rw-r--r-- 1 mleblanc csstf 3864208 Aug 5 15:06 Ecoli.fna

-rw-r--r-- 1 mleblanc csstf 1197842 Aug 9 15:38 MobyDick.txt

OUTPUT (stdout)
The output from your utility should be to both stdout and stderr. Output to stdout should be comprised only of an (unsorted) list of frequency-word pairs. For example, when using the following input from stdin, the output to stdout would look like:

TestEnglish.txt (stdin)

 TestDNA2.fna (stdin – motifs always of length 8)
1 able

7 ACGTACGT

1 elba

6 CGTACGTA

2 I

6 GTACGTAC

1 ere

6 TACGTACG

1 was

1 saw

1 stop

1 pots

1 oh

1 ho

OUTPUT (stderr)
Your utility should print the “number of hash table collisions” that occur to stderr. (see below). Of course, you can also print error messages to stderr such as hitting EOF prematurely or running out of memory on the heap. A sample output to stderr is shown below:

Total # of hash table collisions: 317
COMPILING YOUR UTILITY
It is assumed that you will use the following files to manage your source code:

constants.h
--
all constants (except those used within your classes)

list.h

--
declaration of your linked list class

list.cpp

--
definitions of your linked list methods

hash.h

--
declaration of your hash table class

hash.cpp

--
definitions of your hash table methods

main.cpp

--
your main() routine and associated functions you write

Obviously, we are allowing you to use the C++ (SUN’s CC) compiler. (NOTE: as mentioned above, all your I/O (scanf, printf, etc) and dynamic memory allocation (malloc, free) should be done with <stdio.h>. In fact, avoid <iostream> entirely in this assignment.)

$ CC main.cpp list.cpp hash.cpp

RUNNING YOUR UTILITY

Your executable C++ program (your “utility”) can be easily run on the Unix command-line and used with Unix redirection and pipes. Note that your utility need not “open and read” from files nor sort your output since Unix can easily do a sorting (or word count or …) for you.

$ a.out < MobyDick.txt | sort –nr | head

Data Structures

In order to keep track of words and their associated frequencies, you should implement a Hash Table that uses the current word (motif) as the key. The simplest function to generate the hash value for the key would be the (summation of each ASCII value making up the key) modulus (the size of the hash table). It is beyond the scope of this assignment to worry about a “good” hashing function. We can expect thousands of unique words in a large story. As well, there are 48 or 65,536 potential 8-letter motifs. We will leave the size of your hash table up to you. The truth is, a poor hashing function and table size will actually “smoke test” your program in a very thorough fashion. Note: we are not subtracting points if you have many collisions. Since you will have collisions (that is, words such as “pots” and “stop” will have the same total value when you sum their ASCII letter values), you should implement a dynamically allocated linked list at each cell in your hash table as shown on the next page. (NOTE: your link list must be a dynamically (malloc) allocated list; do not use an array). To get you started, here is part of the declaration for your Hash Table as found in hash.h

hash.h

#include "list.h"

const int TABLE_SIZE = 120;
// or some better value of your choosing
class Hash {

 public:

 Hash();

 ~Hash();

 (and obviously other methods here)
 private:

 LinkedList* table[TABLE_SIZE];
}; // class Hash

[image: image1]
NOTES:

(1) Notice that we are ignoring case for now. That is, we really should treat “That” and “that” as the same word, but since we have not required you to convert everything to lowercase, “That” and “that” will appear as two separate words; that is ok.

(2) Notice that we are ignoring punctuation marks. We could take them out, but for now, you can assume that “whale” and “whale.” (notice the period after the ‘e’ in the second one) are different words; that is ok.

(3) You must skip the newlines when reading DNA. That is, if you read a newline (‘\n’) character, you should throw that character away and read in another character. Said differently, your motifs should only have valid A, C, G, T letters in them. You should never have a motif such as: “ACGTACG\n”.

(4) Take special care with your linked list class. Remember, this dynamically allocated list must use malloc() and free(), thus you can not necessarily count on memory being automatically allocated via a constructor (CTOR) for your linked list.

SUBMIT:

Submit your solutions to the exercise by using the directive below:

submit –c csci204 –a ass2 constants.h list.h list.cpp hash.h hash.cpp main.cpp

An extension of time for the completion of the assignment may be granted in certain circumstances. A request for an extension must be made to the Subject Coordinator before the due date. Late assignments without granted extension will be marked but the mark awarded will be reduced by 1 mark for each day late. Assignments will not be accepted more than three days late.

Your instructors will provide a Marking Check List before the assignment is due.
0

1

2

3

4

“stop”

23

“pots”

5

NULL

Hash

Table

Linked list at each cell in the hash table

“foobar”

67

NULL

A hash-key-value = [(sum of ASCII letters in a word) modulo TABLE_SIZE]

 and this determines the index into the Hash Table. The key values are fictional!

CSCI204/MCS9204 Spring 2004 – Assignment 2
Page 4 of 4

